创源大讲堂—Joint Dimension Assignment and Compression for Deterministic Parameter Vector Estimation in Distributed Multisensor Networks

来源: 发布日期:2023-06-26浏览次数: 返回列表

讲座时间:2023年6月27日20:00-21:00

讲座地点:Zoom会议号:892 7122 4882密码:0627

主讲人简介:宋恩彬,四川大学教授,博士生导师,2007年于四川大学数学学院获得博士学位。 2007年7月~2009年11月在四川大学计算机学院从事博士后研究;2009年12月至2014年6月在四川大学数学学院任副教授。2010年4月~2011年5月,在美国明尼苏达大学电子与计算机工程学院从事博士后研究;2014年1月~2014年2月,在香港中文大学访问。2014年7月至今在四川大学数学学院任教授。曾获得2009年全国百篇优秀博士论文提名奖和2010年四川省科学技术进步奖一等奖。主要从事信息融合,估计与决策,传感器网络,无线通信与信号处理,数学及优化理论在信息处理中的应用等方面的基础研究。近年来主持国家自然科学基金(青年、面上)、博士后一等资助金和特别资助金等纵向项目以及中电科、华为和核动力研究院等企业院所委托的多项项目,发表IEEE期刊论文60余篇。

讲座内容简介:

报告题目:Joint Dimension Assignment and Compression for Deterministic Parameter Vector Estimation in Distributed Multisensor Networks

报告摘要:

This talk considers distributed estimation of an unknown deterministic parameter vector in a bandwidthconstrained multisensor network with a fusion center (FC). Due to the stringent bandwidth requirements, each sensor compresses its observation as a low-dimensional vector via a linear transformation. Then, the FC linearly combines all received compressed data to estimate the deterministic parameter vector based on the best linear unbiased estimator. The problem of interest is to jointly design the dimension assignment (i.e., the compression dimension of each sensor) and the corresponding compression matrix when the total number of compression dimensions is given. Such a joint design problem is formulated as an optimization problem with rank and linear matrix equality constraints, which is shown to be NP-hard for the first time. In addition, penalty decomposition (PD), successive quadratic upper-bound minimization method of multipliers (SQUM-M), and SQUM-M-block coordinate descent (SQUM-M-BCD) are proposed to solve it approximately. Furthermore, we show that any accumulation point of the sequence generated by the PD satisfies the Karush-Kuhn-Tucker conditions of the equivalentformulation of the joint design problem; the SQUM-M admits the same convergence property as the PD under some conditions. Numerical experiments corroborate the merits of PD and SQUM-M-BCD as compared with existing strategies for the heterogeneous scenario, and further illustrate the effectiveness of the proposed algorithms for the correlated noise case.

主办:研究生院

承办:数学学院


作者:王承竞   编辑:阮琦